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Abstract

Interactive Region Of Interest (IROI) scalability is one
of the requirements of the Scalable Video Coding extension
of H.264/AVC (SVC). IROI can be used in applications in
which the most interesting part of the video pane (in partic-
ular, the ROI) cannot be defined during the encoding phase.
Therefore, the coded bitstreams have to be created in such
a manner that the ROI can be selected on-the-fly at any mo-
ment. In this paper, we show how these bitstreams can be
generated within the SVC specification by relying on the
Flexible Macroblock Ordering (FMO) tool. By using this
tool, it is possible to divide a frame in independent decod-
able tiles or slices. We subsequently explain the extraction
process to select the slices belonging to the desired ROI.
Furthermore, in this paper, we shift the adaptation process
(i.e., the extraction of the ROIs) from the binary domain
to the XML domain. This gives us the opportunity to rely
on a format-agnostic adaptation engine which only makes
use of an XML-based bitstream syntax description and a
transformation stylesheet. The use of the MPEG-21 Bit-
stream Syntax Description Language will be discussed to
obtain the XML-based bitstream syntax descriptions. The
performance of the different steps in this framework is in-
vestigated, in particular, the overhead of coding a bitstream
once with and once without the IROI scalability, the gener-
ation time of the XML descriptions, the extraction process
implemented in Streaming Transformations for XML (STX),
the regeneration of the adapted bitstream, and finally the
quality and bit rate of the different bitstreams.

1. Introduction

In many video-based application scenarios (e.g., surveil-
lance systems and video conferencing), it can be interesting
to work with Regions Of Interest (ROIs). These ROIs typ-
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Figure 1. An example of IROI scalability in a
surveillance system

ically contain the most important or interesting parts of the
video pane. The selection of the ROIs is user and appli-
cation dependent. In most on-line applications, the ROI is
defined during the encoding process, resulting in the fact
that the ROI is extracted and the quality of the background
is decreased.
However, in a number of scenarios, the ROI cannot be
pointed out during the encoding process and has to be se-
lected on-the-fly during an adaptation process. Such a sce-
nario can for example appear in surveillance systems. As
long as nothing suspicious appears on the screen, the video
shall contain a constant quality. At the moment that a ques-
tionable situation arises, the guard can select the interest-
ing part of the pane and this region will be transmitted at
a high quality, while the surrounding background has a de-
graded quality. At the same moment, another guard, walk-
ing around with a PDA at his disposal, may be interested
in another part of the video pane. He can extract another
ROI from the same coded bitstream in an on-the-fly fash-
ion. Such an application scenario is shown in Figure 1.
In this context, we are talking about Interactive Regions Of
Interest (IROI). In JPEG2000, the concept of IROI was al-
ready introduced for still images [11]. In this case, the ROI



is not coded during the encoding process but is determined
by an extractor. Therefore, the encoder has to generate bit-
streams in such a way that the ROI can be selected in an
interactive manner. This means that these bitstreams have
to be IROI scalable. Therefore, in this paper, we will use
the Scalable Video Coding extension of H.264/AVC (fur-
ther abbreviated as SVC) specification because one of its
requirements is as follows: scalable coding should support
a mechanism that permits interactive rectangular region of
interest scalability with an access granularity of 32 pix-
els [12].
In the first part of this paper, we discuss the technolo-
gies used in order to create and to adapt IROI scalable
bitstreams. This is particularly done using the Flexible
Macroblock Ordering (FMO) tool as standardized in the
H.264/AVC specification [2]. Afterward, we explain how
the desired ROIs can be extracted from an SVC bitstream.
This algorithm, which is only based on syntax elements
available in the bitstream, is used to extract the selected
ROIs in an interactive way. This is discussed in Section 3.
Furthermore, we want to obtain a format-agnostic content
adaptation framework. Therefore, we prefer to realize the
extraction process in the XML domain [10]. The MPEG-
21 Bitstream Syntax Description Language (MPEG-21
BSDL, [15]) framework can be used to realize the content
adaptation process in the XML domain, in particular for
exploiting the IROI scalability. In this paper, we describe
how the MPEG-21 BSDL framework can be used to obtain
XML descriptions of the bitstreams, and how the tailored
bitstreams can subsequently be generated by using trans-
formed XML descriptions.
Finally, a number of performance results of the XML-driven
framework are discussed in Section 4. In particular, the
overhead of coding a bitstream once with and once without
the IROI scalability, the generation time of the XML de-
scriptions, the extraction process implemented in streaming
transformations for XML, the regeneration of the adapted
bitstream, and finally the quality and bit rate of the different
bitstreams are investigated. The conclusion of this paper is
drawn in Section 5.

2. Fundamental Technologies

2.1. IROI Scalability in H.264/AVC Scal-
able Video Coding

IROI scalability means that the encoder generates a scal-
able bitstream without knowledge about the possible ROIs
(coding process). Then, the ROI can be selected on-the-
fly by the user (selection process). Because there are no
predefined fixed ROIs, the user can select his own ROIs at
any moment. This information about the selected ROIs is
sent to an extraction engine in order to customize the scal-
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Figure 2. Frame divided in separately acces-
sible tiles or slices

able bitstream and to generate an adapted bitstream (extrac-
tion process). Finally, the adapted bitstream can be decoded
such that the ROI has a higher visual quality than the sur-
rounding background (decoding process).
In H.264/AVC, the error resilience tool FMO can be used to
define a certain ROI. FMO type 2 is the ideal candidate to
support rectangular ROIs during the encoding phase [14].
Because the FMO maps containing the ROIs are defined
during the encoding phase, this type cannot be used for
IROI scalability without taking precautions.
In order to support interactive rectangular ROI scalability,
a frame has to be divided into different tiles that can be se-
lected individually. Such a division is shown in Figure 2,
in which every tile represents a rectangle of 3 by 3 Mac-
roBlocks (MBs). Each tile has to be coded as an individual
slice such that the tiles can be decoded independently of
other tiles. It is clear that the encoded bitstream contains no
predefined ROIs and that the tiles belonging to a certain ROI
can be selected on-the-fly during the extraction process.
There are several possibilities to generate bitstreams con-
taining the tiled structure as shown in Figure 2. We will de-
scribe three possible configurations available in the current
SVC specification for the encoder to obtain the desired par-
titioning in slices and tiles. The term Joint Scalable Video
Model (JSVM) will be used further in this paper to indicate
the current SVC specification.

• Using FMO type 2, it is possible to construct the tile
structure of Figure 2. This type uses one or more rect-
angular slice groups and a background. For each ver-
tical tile column (with a width of 3 macroblocks and a
height of 9 macroblocks), a non-overlapping rectangu-
lar slice group is defined by coding the number of the
top-left macroblock of the column (of the first row) and
the bottom-right macroblock (of the last row). The last
column is not defined by a rectangular slice group and
represents the background of the frame.
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Figure 3. Frame divided in 6 slice groups

In order to obtain the horizontal division of the tile
rows, a fixed number of macroblocks or rows for ev-
ery slice in each slice group is given to the encoder as
input parameter. For example, in Figure 2, nine mac-
roblocks are used for each slice or tile.

• FMO type 0 (also called interleaved slice groups) is
another slice group division that can be used to obtain
our tiled slice partition. In case of this type, each slice
group consists of a fixed number of macroblocks that
it needs to contain in raster scan order before another
slice group can be started. When all slice groups have
been used and there are still some macroblocks left, the
entire allocation process is repeated starting from the
first slice group. To obtain our tiled partition, the width
of the tile columns will be for the corresponding slice
group. This way, the slice groups constitute a number
of columns covering the frame.
The height of the tiles can be obtained by giving the
number of rows or a fixed number of macroblocks of a
slice to the encoder. An example of such a division for
a QCIF resolution video sequence is given in Figure 3.

• FMO type 6 can also be used to assign the macroblocks
to different slice groups. In this case, a syntax element,
slice group id, is sent for each macroblock. In
other words, the complete macroblock to slice group
map is encapsulated into the bitstream resulting in a
lot of overhead compared to the other two methods.

2.2. MPEG-21 Bitstream Syntax Descrip-
tions

MPEG-21 describes a multimedia framework that aims
enabling a transparent and augmented use of multimedia re-
sources across a wide range of networks and devices [5].
In such a framework, it should be possible to deliver scal-
able video content without the need to have knowledge re-
garding the underlying coding format. In order to meet the
constraints of a particular usage environment, the bitstream
customization process typically involves the removal of cer-
tain data chunks and the adaptation of the value of certain
syntax elements.
In particular, part 7 of the MPEG-21 standard, the Digi-
tal Item Adaptation (DIA, [1]) specification, offers one way
to realize this goal. This solution relies on automatically
generated XML-based descriptions that contain information
about the high-level bitstream structure. The DIA standard
specifies MPEG-21 BSDL to describe the high-level struc-
ture of an encoded bitstream in XML. The generated docu-
ments are called Bitstream Syntax Descriptions (BSDs).
The entire chain of processes of the BSDL framework is
given in Figure 4. Explanatory notes of the indicated num-
bers are provided below:

Scalable Bitstream

BintoBSD

BSDtoBin

Adapted Bitstream: 
Half Frame Rate and Resolution

BS Schema:
Containing high-level structure 

of the coding format

XML Description 
(BSD)
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<bitstream>
<header>0 25</header>
<frame>26 125</frame>
<frame>353 541</frame> 

</bitstream>

Figure 4. Functioning of the MPEG-21 BSDL
framework

(1) The high-level structure of the coding format used
is represented by a Bitstream Syntax Schema (BS
Schema). The language used to construct such a BS
Schema is BSDL, and this language is standardized in
the DIA specification.

(2) The XML-based BSD of the scalable bitstream is gen-
erated by a format-agnostic parser once the original
(encoded) bitstream and a corresponding BS Schema
are known. The functioning of this parser, i.e. the Bin-
toBSD Parser, is also defined the standard.

(3) The generated description (BSD) can subsequently be
transformed by using a well-known XML transforma-
tion technology like Extensible Stylesheet Language



Transformations (XSLT, [13]) or Streaming Transfor-
mations for XML (STX, [6]). This transformation rep-
resents the adaptation process in the XML domain.

(4) The format-agnostic BSDtoBin Parser creates an
adapted bitstream, using the transformed BSD, a cor-
responding BS Schema, and the original (scalable) bit-
stream.

Note that the employment of format-agnostic parsers
(namely, BintoBSD and BSDtoBin) means that the code
base of these parsers does not have to be rewritten in order
to support the customization of bitstreams compliant with
other coding formats.
In this paper, we translate the high-level structure of
JSVM6-coded bitstreams into an XML document using
BSDL. The following syntactical data structures are de-
scribed in XML: Supplemental Enhancement Information
(SEI) messages, Sequence Parameter Sets (SPSs), PPSs,
Network Abstraction Layer (NAL) unit headers, and the
first four syntax elements of the slices. This information is
needed to exploit the IROI scalability in the XML domain,
as further explained in Section 3. The development of the
BS Schema used in order to generate the BSDs is discussed
in [7].

3. Extraction of IROIs

3.1. Theoretical Extraction of a IROI

In order to enable the extraction of ROIs in an inter-
active manner, it is necessary that a bitstream is coded in
such a way that the ROIs can be selected in an on-the-fly
fashion. The scalability properties generated by a JSVM6-
encoder [18] are shown in Figure 5. Bitstreams containing
these properties are the subject of adaptation throughout this
paper. As one can notice in the figure, every bitstream con-
tains the three common scalability axes along which adap-
tations can be executed. In particular, the structure of each
bitstream is as follows:

• two spatial layers to obtain spatial scalability;

• hierarchical B pictures to realize temporal scalable lay-
ers;

• and the spatial enhancement layer is composed of a
quality base layer and three Fine Grain Scalability
(FGS) enhancement layers to offer progressive refine-
ment quality layers.

Bitstreams containing these characteristics are feasible can-
didates to be used in heterogeneous environments. In order
to exploit IROI scalability, FMO type 0 is used in the spa-
tial enhancement layer to obtain the tiled slice partition as

explained in Section 2.1. This structure gives a user the
possibility to select the tiles of the ROI on-the-fly, and the
adaptation engine will only send the FGS enhancement lay-
ers belonging to the ROI to the decoder.

First progressive enhancement layer:
• Tiled slice partition for IROI using FMO type 0

Video sequence

Spatial base layer:
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Figure 5. JSVM6 encoder generating IROI
scalable bitstreams

Now, we will explain how the IROIs can be extracted
from the original scalable bitstreams. Generally, the user
will select the desired ROI by reporting a rectangular area.
This area can preferably be described using the FocusOfAt-
tention description tool, which is also a part of the MPEG-
21 DIA standard [1]. The area is defined in terms of the
top-left and bottom-right pixel coordinates. These coordi-
nates are sent to the adaptation engine, which subsequently
selects the slices that are part of the ROI. In the first step, the
engine will map the pixel coordinates on the correspond-
ing macroblock numbers, in particular by using following
formula: by div 16c × W + bx div 16c. This number in-
creases in raster scan order. The first macroblock of the
frame has number 0 (see Figure 3). Once the macroblock
numbers are calculated, the tile numbers, in which the top-
left and bottom-right macroblocks of the ROI lie, can be de-
termined. The tiles are numbered as indicated in Figure 2.
These numbers can be calculated as follows (the abbrevia-
tions used throughout the formulas are shown in Figure 3):

TL = number of top-left macroblock of ROI

BR = number of bottom-right macroblock of ROI

W = width of the frame in terms of macroblocks

H = height of the frame in terms of macroblocks

Tile W = width of a tile in terms of macroblocks

Tile H = height of a tile in terms of macroblocks

Tile id TL = (b(TL mod W ) div Tile Wc×dH div Tile He)

+(bbTL div Wc div Tile Hc+1)

Tile id BR = (b(BR mod W ) div Tile Wc×dH div Tile He)

+(bbBR div Wc div Tile Hc+1)



Once the top-left and bottom-right corner of the ROI are
calculated, then all other tile numbers representing the area
of the desired ROI can be determined. A tile with tile num-
ber Tile i,1≤Tile i≤dW div Tile We×dH div Tile He is a part of
the ROI if:

((Tile i−1) mod H Tiles≥(Tile id TL−1) mod H Tiles)

∧((Tile i−1) mod H Tiles≤(Tile id BR−1) mod H Tiles)

∧(dTile i div H Tilese≥dTile id TL div H Tilese)

∧(dTile i div H Tilese≤dTile id BR div H Tilese)

in which: H Tiles=dH div Tile He

The frame division in separately accessible tiles is an ab-
straction layer on top of the macroblock division. Informa-
tion about this abstraction layer is in a limited way present
in the scalable bitstream. In particular, there is only infor-
mation available about the width and height of the tiles. In
order to determine the location of a slice in a frame, the syn-
tax element first mb in slice can be used. The last
step for the adaptation engine consists of the mapping of
each tile that is part of the ROI on the value of the syntax
element first mb in slice of the corresponding slice.
The value of syntax element first mb in slice for a
tile with number Tile i can be obtained as follows:

W×((Tile i−1) mod dH div Tile He)×Tile H

+Tile W×(b(Tile i−1) div dH div Tile Hec)

Now, all necessary information is available in the adaptation
engine in order to select the slices that are part of the ROI
by comparing the value of first mb in slice of a slice
with the values of the ROI.

3.2. High-level structure of an SVC bit-
stream

The structure of a scalable bitstream is given in Figure 6
and this structure can be found again in the XML descrip-
tions (BSDs). This high-level structure will now be dis-
cussed to be able to explain the BSD transformations.
A scalable bitstream can contain SEI messages. Such a
message assists in the processes related to decoding, display
or other purposes and can be ignored by a decoder to repro-
duce the luma and chroma samples. SEI messages can for
example be used for signaling information related to buffer-
ing, timing, cropping, and so on.
The first SEI message in the scalable bitstreams used (as
shown in Figure 6) is the scalability info SEI mes-
sage. This message contains information about the scala-
bility axes incorporated in the bitstream such as the number
of spatial layers, the resolution of the layers, the number of
temporal levels, frame rates, information about the grids for
IROI, etc. Based on this message, an adaptation engine can
build up the internal structure of the bitstream. The engine

uses this information to decide which kind of tailored bit-
streams can be generated from the parent stream.
After this first SEI message, a number of SPSs follow;
namely at least one SPS for each spatial layer. An SPS is
applicable to a complete sequence of pictures of a particular
spatial layer and contains information about the profile, the
spatial resolution of the pictures in the sequence, etc.
Furthermore, a number of PPSs are encapsulated in the bit-
stream. A PPS is applicable to a number of pictures of
a sequence. There exist at least as many PPSs as SPSs
in the bitstream because every SPS must be referred by a
PPS. The PPS belonging to the spatial enhancement layer
contains, among other things, the number of slice groups,
the type of the slice group map, and the value of the
run length minus1 syntax element in order to obtain
the tiled slice division. Normally, after having received the
needed SPSs and PPSs, the decoder can start reproducing
the video sequence by decoding the coded pixel values. In
our scalable bitstreams other SEI messages are present as
well, in particular sub seq info SEI messages. These
SEI messages contain information about the temporal de-
composition of the video sequence. Finally, the NAL units
containing a slice of a certain frame will follow. In partic-
ular, first, the slices of the spatial base layer are embedded
in the bitstream, followed by the slices of the tiled division
of the spatial enhancement layer and the progressive refine-
ment layers. A subsequent sub seq info SEI message
indicates the start of the next frame.

3.3. Extraction in the XML domain

The structure of the SVC coding format, as discussed in
Section 3.2 for the bitstreams used in this research, will be
established in a BS Schema using BSDL. The high-level
structure of a coded bitstream can be found in the BSD af-
ter executing the BintoBSD process, which is guided by the
BS Schema. The two most important data blocks in the
bitstream structure for an IROI-based adaptation engine are
the scalability info SEI message and the value of
the first mb in slice syntax element (available in the
slice header).
Figure 7 contains a part of the scalability info SEI
message as available in the used BSDs. This message is
composed of information about the different layers that can
be extracted. The number of layers is indicated on line 3
(in particular, 25 layers in this BSD1). In Figure 7, informa-
tion about a possible layer is shown. From line 9 up to and
including line 11, information about the temporal, spatial,
and quality level of a layer is given. This layer belongs to
the quality base layer of the second spatial level, having the
lowest temporal decomposition.
Further, information about the bit rate, frame rate, and res-

125 because of 5 temporal layers for each spatial and quality layer
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Figure 6. Structure of the bitstream generated by the encoder of Figure 5

olution of the layer is given. The most important part for
our IROI-based adaptation engine is the information about
the tiled slice division. This information is shown in the
figure from line 42 until 48 inclusive. It gives the height
and width of the tiles in terms of macroblocks (in our ex-
ample, grids of 6x6 macroblocks). Based on this infor-
mation, the adaptation engine calculates the values of the
first mb in slice syntax element of the ROI that has
to be extracted as discussed in Section 3.1.
Once the scalability info SEI message is inter-
preted and the tiled slice division is calculated, the slices
belonging to the IROI can be selected. This requires an ex-
amination of the first syntax elements of the slice headers.
In Figure 8, the XML representation of two slices is given.

• The first slice (line 4 until 23) belongs to the
H.264/AVC-compliant spatial base layer. This clas-
sification of the slice is based on the NAL unit type
(type 1 on line 7). As one can see, this slice contains
no information about the temporal level to which it be-
longs. Therefore, a sub seq info SEI message will
precede this NAL unit (which is not shown in the fig-
ure and which is less important for the IROI extrac-
tion). More information about this SEI message can
be found in [16]. In case the adaptation engine de-
tects such a slice, the description of this slice will be
copied to the transformed BSD (the complete spatial
base layer will be present in the transformed BSD and
so also in the adapted bitstream).

• The second part of the fragment in Figure 8 shows
a slice that belongs to a scalable enhancement layer
(indicated by NAL unit type 20 on line 27). Such
a NAL unit also contains information about the scal-
ability properties of the layer to which the slice be-
longs. This information is present in the NAL unit
header from line 28 to 35. The value of the syntax el-
ement first mb in slice is also shown (line 40).
The transformation engine uses this value to identify
whether the slice belongs to the desired ROI or not.

Note that the slice is not completely described in the XML
document; only the first syntax elements are available,
needed for guiding the decision-making process. The other

1 <?xml version="1.0"?>
<scalability_info>

<num_layers_minus1>24</num_layers_minus1>
<!-- Previous layers -->

5 <layer_info>
<layer_id>5</layer_id>
<simple_priority_id>0</simple_priority_id>
<discardable_flag>0</discardable_flag>
<temporal_level>0</temporal_level>

10 <dependency_id>1</dependency_id>
<quality_level>0</quality_level>
<sub_pic_layer_flag>0</sub_pic_layer_flag>
<sub_region_layer_flag>0</sub_region_layer_flag>
<iroi_slice_division_info_present_flag>1</

iroi_slice_division_info_present_flag>
15 <profile_level_info_present_flag>0</profile_level_info_present_flag>

<bitrate_info_present_flag>1</bitrate_info_present_flag>
<frm_rate_info_present_flag>1</frm_rate_info_present_flag>
<frm_size_info_present_flag>1</frm_size_info_present_flag>
<layer_dependency_info_present_flag>1</

layer_dependency_info_present_flag>
20 <init_parameter_sets_info_present_flag>0</

init_parameter_sets_info_present_flag>
<exact_interlayer_pred_flag>1</exact_interlayer_pred_flag>
<profile_level_info_present_flag_is_0>

<profile_level_info_src_layer_id_delta>0</
profile_level_info_src_layer_id_delta>

</profile_level_info_present_flag_is_0>
25 <bitrate_info_present_flag_is_1>

<avg_bitrate>11</avg_bitrate>
<max_bitrate_layer>0</max_bitrate_layer>
<max_bitrate_decoded_picture>0</max_bitrate_decoded_picture>
<max_bitrate_calc_window>0</max_bitrate_calc_window>

30 </bitrate_info_present_flag_is_1>
<frm_rate_info_present_flag_is_1>

<constant_frm_rate_idc>0</constant_frm_rate_idc>
<avg_frm_rate>480</avg_frm_rate>

</frm_rate_info_present_flag_is_1>
35 <frm_size_info_present_flag_is_1>

<frm_width_in_mbs_minus1>21</frm_width_in_mbs_minus1>
<frm_height_in_mbs_minus1>17</frm_height_in_mbs_minus1>

</frm_size_info_present_flag_is_1>
<sub_region_layer_flag_is_0>

40 <sub_region_info_src_layer_id_delta>0</
sub_region_info_src_layer_id_delta>

</sub_region_layer_flag_is_0>
<iroi_slice_division_info_present_flag_eq_1>

<iroi_slice_division_type>0</iroi_slice_division_type>
<if_iroi_slice_division_type_is_0>

45 <grid_slice_width_in_mbs_minus1>5</
grid_slice_width_in_mbs_minus1>

<grid_slice_height_in_mbs_minus1>5</
grid_slice_height_in_mbs_minus1>

</if_iroi_slice_division_type_is_0>
</iroi_slice_division_info_present_flag_eq_1>
<layer_dependency_info_present_flag_is_1>

50 <num_directly_dependent_layers>1</num_directly_dependent_layers>
<directly_dependent_layer_id_delta_i_j>5</

directly_dependent_layer_id_delta_i_j>
</layer_dependency_info_present_flag_is_1>
<init_parameter_sets_info_present_flag_is_0>

<init_parameter_sets_info_src_layer_id_delta>0</
init_parameter_sets_info_src_layer_id_delta>

55 </init_parameter_sets_info_present_flag_is_0>
</layer_info>
<!-- Following layers -->

</scalability_info>

Figure 7. Fragment of a scalability info
SEI message as available in the BSDs

syntax elements and the coded pixel values are encapsulated
in the slice payload (line 43). This line represents a byte
range indicated by the start byte and the length of the pay-



load. These values point to the original bitstream (this is the
reason why the original bitstream is needed by the BSDto-
Bin Parser in Figure 4, in particular to copy the payloads
from the original bitstream to the adapted one).

1 <?xml version="1.0"?>
<bitstream>

<!-- NAL unit of a slice belonging to the spatial base layer -->
<nal_unit>

5 <forbidden_zero_bit>0</forbidden_zero_bit>
<nal_ref_idc>3</nal_ref_idc>
<nal_unit_type>1</nal_unit_type>
<raw_byte_sequence_payload>

<coded_slice_of_a_non_IDR_picture>
10 <slice_layer_without_partitioning_rbsp>

<slice>
<first_mb_in_slice>0</first_mb_in_slice>
<slice_type>0</slice_type>
<pic_parameter_set_id>0</pic_parameter_set_id>

15 <frame_num xsi:type="b9">1</frame_num>
<bit_stuffing>1</bit_stuffing>
<slice_payload>18016 4291</slice_payload>

</slice>
</slice_layer_without_partitioning_rbsp>

20 </coded_slice_of_a_non_IDR_picture>
</raw_byte_sequence_payload>

</nal_unit>
<!-- NAL unit of a slice belonging to the spatial enhancement layer-->
<nal_unit>

25 <forbidden_zero_bit>0</forbidden_zero_bit>
<nal_ref_idc>3</nal_ref_idc>
<nal_unit_type>20</nal_unit_type>
<nal_unit_information_for_scalable_extension>

<simple_priority_id>0</simple_priority_id>
30 <discardable_flag>0</discardable_flag>

<reserved_zero_bit>0</reserved_zero_bit>
<temporal_level>0</temporal_level>
<dependency_id>1</dependency_id>
<quality_level>0</quality_level>

35 </nal_unit_information_for_scalable_extension>
<raw_byte_sequence_payload>

<coded_slice_of_a_non_IDR_picture_in_scalable_extension>
<slice_layer_in_scalable_extension_rbsp>

<slice_in_scalable_extension>
40 <first_mb_in_slice>132</first_mb_in_slice>

<slice_type>1</slice_type>
<bit_stuffing>24</bit_stuffing>
<slice_payload>22387 41</slice_payload>

</slice_in_scalable_extension>
45 </slice_layer_in_scalable_extension_rbsp>

</coded_slice_of_a_non_IDR_picture_in_scalable_extension>
</raw_byte_sequence_payload>

</nal_unit>
</bitstream>

Figure 8. Fragments of slice representations

4. Experimental Results

4.1. Methodology

To evaluate the performance of our XML-driven adapta-
tion framework for the exploitation of IROI scalability, we
have generated two scalable bitstreams. These bitstreams
contain the scalability axes as shown in Figure 5. The two
sequences are the well-known Crew and Ice sequences, hav-
ing a resolution of 704× 576 at the highest (second) spatial
layer and containing 150 frames at full frame rate (30Hz).
In each scalable bitstream, the spatial base layer is coded
with a quantization parameter of 25. The quality base layer
of the spatial enhancement layer is coded with a quantiza-
tion parameter of 45. This quality base layer is coded with
FMO type 0 and is extended with three FGS refinement lay-
ers. FMO is used to obtain the tiled slice division. Each tile
has a size of 7 by 6 macroblocks (except the tiles belong-
ing to last tile column or row) resulting in 7 slice groups

(of which the first 6 slice groups have 6 as value for the
run length minus1 syntax element and 1 for the last
slice group). In the experiments, we have used version 5.12
of the JSVM6 reference software.
For each scalable bitstream, the corresponding BSD has to
be generated in order to extract the desired ROIs. Therefore,
we have used an optimized BintoBSD Parser the function-
ing of which is discussed in [8]. The generated BSDs are
the subject of a transformation performed by an adaptation
engine. This engine typically takes a rectangular ROI from
the user as input to know the most interesting part of the
video sequence. In our experiments, the ROI is defined by
pixel coordinates (368; 64) and (560; 272). The transforma-
tion engine selects the complete spatial base layer and the
quality base layer of the spatial enhancement layer (in or-
der to keep the background on which the motion estimation
was executed), together with the three FGS layers for the
slices belonging to the ROI. The BSD transformation en-
gine will be steered by a stylesheet that implements our al-
gorithm as discussed in Section 3. There exist multiple tech-
nologies to implement an XML transformation and we have
chosen to use the STX language. This choice was inspired
by the streaming capabilities and low memory footprint of
STX [9]. Finally, the adapted bitstreams are created from
the transformed BSDs by using the BSDtoBin Parsers as
implemented in the MPEG-21 DIA reference software [3].
The measurements were done on a PC having an Intel Pen-
tium D CPU, clocked at 2.8GHz and having 2GB of RAM
at its disposal. The operating system used was Windows
XP Pro (service pack 2). Sun Microsystems Java 2 Run-
time Environment (Standard Edition version 1.5.0 02-b09)
was running as Java Virtual Machine (needed to execute the
BSDL and BSD transformation software). The STX engine
used in our tests is Joost (version 2005-05-21)2. Finally, all
time measurements were executed five times. An average
was calculated over the five runs.

4.2. Discussion and Results

The results of our experiments are shown in Table 1. The
first part of the table contains information about the gen-
erated bitstreams. Each sequence was encoded two times,
once with and once without FMO. One can observe that the
overhead of using FMO is significant while the same qual-
ity is kept, in particular 31.7% for the Crew sequence and
42.7% for the Ice sequence. This overhead can be attributed
to a less efficient intra prediction (which needs to be done
inside the small slices), as well as to the enormous number
of extra NAL unit and slice headers that have to be encap-
sulated in the bitstream. More precisely, for each frame, 4
headers are needed in the spatial enhancement layer in case

2This engine can be found on http://joost.sourceforge.
net.



ROI(a) (b)

Figure 9. Example of the ROI selection: (a) is the original coded bitstream, (b) is the adapted version

no FMO is used, while 168 headers are necessary to obtain
the desired tiled slice division when FMO is in use. Further-
more, this overhead is also content dependent. The more
complex the sequence, the lesser the impact of the header
on the bitstream size (the Crew sequence is more complex
than the Ice sequence). Note that only FMO-encoded bit-
streams are suited for IROI extraction.
The second part of the table contains the performance of
our XML-driven adaptation framework. First, one can no-
tice that the BSD generation process takes the most time.
Nevertheless, the execution time is acceptable in compari-
son with the encoding time (multiple hours) and this process
has to be executed only once. The generated BSDs are ver-
bose. As one can see, they are multiple times larger than the
corresponding bitstream itself. A solution for this problem
is to compress the XML documents, for example, by using
Binary MPEG format for XML (BiM, [4]). In the table, we
have given the results by compressing the documents us-
ing the default text compression algorithm of WinRAR (it
is expected that these results give a good indication for tools
built on top of BiM, [17]). However, this process cannot be
executed in real time. The origin of this behavior is again
the verbose nature of the BSDs. The STX engine spends too
much time on I/O operations. More precisely, the STX en-
gine parses approximately 1600 NAL units per second. The
sizes of the transformed BSDs and their compressed equiv-
alents are three times smaller than the original ones. This is
as expected because of the removal of the FGS layers from
the slices that do not belong to the ROI. Finally, the gener-

ation of the adapted bitstream from the transformed BSD is
the fastest process: it can be done in almost real time. This
process is faster than the transformation because less NAL
units have to be interpreted.
The last part of the table shows the bit rate and quality of the
adapted bitstreams after the extraction of the ROIs. One can
see that the bit rate reduces significantly without a dramat-
ical reduction in objective quality. Note that the quality of
the ROI is still intact; only the background has a degraded
quality. This is shown in Figure 9. The left frame contains
the original coded bitstream. The right frame of the figure
contains the adapted version in which the ROI is selected
and is transmitted at full quality while the background has
a degraded quality.

5. Conclusions and future research

In this paper, we have shown how Interactive Region of
Interest scalability can be obtained in the Scalable extension
of H.264/AVC. IROI means that the ROI is not coded dur-
ing the encoding process but that this area of interest can be
extracted during an adaptation process. As such, the IROI
can be selected on-the-fly. Therefore, the encoded scalable
bitstreams should be structured such that these ROIs can be
selected and extracted without a complete decode-encode
step. In this paper, we explain how such a structure can be
obtained. An abstraction layer on top of the frames is de-
fined which divides the frames in a tiled structure such that
each tile represents an individual accessible slice. The FMO



Table 1. Performance results
Crew Ice

Process sequence sequence
Bit rate without FMO (KB) 1508 1055
Quality without FMO (dB) 38.31 41.15

Bit rate with FMO (KB) 1987 1506
Quality with FMO (dB) 38.3 41.17

BSD generation (s) 75.2 78.02
BSD size (KB) 29340 29335

Compressed BSD size (KB) 581 579
Transformation (s) 16.7 16.7

Transformed BSD size (KB) 10010 10008
Compressed transformed BSD size (KB) 220 219

Bitstream generation (s) 6.41 6.34
Bit rate extracted (KB) 852 681

Quality adapted bitstream (dB) 34.43 35.77

tool was used to create this tiled structure. After a discus-
sion of the generation of IROI scalable bitstreams, we out-
line the extraction process such that the ROIs are extracted
at a high visual quality, while the surrounding background
has a degraded quality. This extraction process can be exe-
cuted on the scalable bitstream itself. However, in this pa-
per, the adaptation step is executed in the XML domain.
The XML transformation is implemented in STX and gives
us the opportunity to obtain a format-agnostic video content
adaptation framework in which ROIs can be selected in an
on-the-fly fashion.
From the experimental results, we can conclude that the
overhead of using FMO is significant, as well as the sizes
of the XML descriptions on which transformations are to
be executed. These shortcomings of our adaptation frame-
work will be examined in future research. Furthermore, we
will investigate the possibility to change the IROI during the
BSD transformation and streaming process.
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